
k AD-A±7B 257 IMPLEMENTING AN INTERIOR POINT METHOD IN A MATHEMATICAL 1/1
I PROGRRHMING SYSTEM 1(U) KETRON MANAGEMENT SCIENCE INC
I ARLINGTON YA J A TOMLIN ET AL. OCT 96 N66114-05-C-6330

UCLASSIF I=ED F/G 9/2 NL

4

An

Ll 6

11111

- R PYRESOLUrI(ON tE ST CHART

ALV

00
0 IMPLEMENTING AN INTERIOR POINT METHOD IN A

MATHEMATICAL PROGRAMING SYSTEM, I

DTIC

ELECTE1

JA. Tomlin

Ketron Management Science,lnc., Mountain View, CA 94040

and

J.S. Weleh.
Ketron Manag.ment ScienceAjnc., Arlington, VA 22209

Abstract

This paper considers the integration of an interior point algorithm with a lrge-scale commerzil MP.S. V.
Exploitation of exitsing features of the MPS and tr-.nition to an optirnuln bsic solution are discussed.
Preiimir ary computational rtults are presente,. .

APPzoyed iom Public releae;Diutzutioo Unlimited

Presented at the ORSA/TIMS 22nd JoIn; National Meeting
Miami, Florida
October, 1986 -e

.0.'e

4

IMPLEMENTING AN INTERIOR'POINT METHOD IN A
MATHEMATICAL PROGRAMMING SYSTEM, I

by

J.A. Tomlin
Ketron Management Science,Inc., Mountain View, CA 94040

and

J.S. Welch
Ketron Management ScienceInc., Arlington, VA 22209

1. Introduction 4.

For over thirty years Mathematical Programming Systems (MPS's) have been built arround sophisticated
implementations of the simplex method, with its many variations, refinements and extensions. During
almost this entire period the simplex method was unchallenged as the method of choice for solving linear
programs, and by extension those other classes of problems, such as mixed integer and some kinds of nonlinear
programs, which use sequences of linear programs (LP's). In the light of new developments in mathematical
programming, this situation now requires re-examination.

The projective method, published by Karmarhlr (1984), is an interior point method, which at first sight has
nothing in common with the simplex method, proceeding as it does through the (relative) interior of the
feasible reg, i, rather than from vertex to vertex of the polytope defining that region. While claims have
been made hL the theoretical virtues of other methods (notably the ellipsoid method of Kachiyan(1979)),
Karmarkar's rk has drawn much attention because of widely publicised claims that his method is orders
of magnitude ,f 'ter than the simplex method and some of the commercial MPS's that employ it.

Much of the cont:)versy remains to be resolved. It turns out that, viewed in the geometry in which Dantzig Zr
originally conciev i the simplex method (see Dantzig(1963)), the two methods are not wholly unrelated
(Stone and Tovey(1986)). Even more intriguingly, it has been shown by Gill et al (1985) that the projective
method is equivalent to a special case of a barrier function method (see Fiacco and McCormick(1968)).
This has lead to a much better understanding of the mathematical and computational proceedures involved,
which is now being backed up by independant computational results. In particular, Gill et al (1985) obtained
computational results showing the barrier method to be comparable in efficiency with the simplex method.
Subequently, Adler et al (1986) presented computational result3 which indicate that an affine form of the a
projective method (see Vanderbei et al (1985)), operating on the dual LP can be faster than some simplex 0]
implementations by a factor of two or more on many problems.

Even though these computational results amre very prellminary, they are impressive enough to warrant a
realistic evaluation of interior point methodologies in the context of the large scale MPS's actually used to
solve large scale real world problems. Such integration and testing. the topic of this paper. es

I -0--k

2. Spectal Purpose Codes and MPS's

Development of new mathematical programming algorithms (usually for problems of particular structure)
has frequently lead to the development of special pupose codes, usually written in FORTRAN or some other
high level language. These are often used to test the algorithms and then 'cleaned up' for use on practical
problems. However, in most cases the facilities provided are rudimentary - the ability to input a model in
standard form (such as UPS format), an optimizer, and solution output (perhaps also in MS format) for
the best solution obtained. It is rare to find facilities for revising and restarting models, parametricS or
ranging, or any of the other 'bells and whistles" provided by a large scale MPS (see Orchard-Hays (1968)
for a description of MPS facilities and terminology). There are, of course, exceptions which prove the rule;
notably the restart and model revision tools provided in MINOS (see Murtagh and Saunders (1985)) and
the 'X. System' of Brown and Graves (1983).

A large scale MPS is a complicated software system which may be dominated not by algorithmic considera-
tions, but by model management, sensitivity analysis, case study and reporting requirements. The end user
usually does not know (or care) how the results were produced, but often requires voluminous reports and
the ability to work from a large database. The resulting environment may then be something like that in
Figure 1; a simplified schematic of Ketron Management Science's proprietary MPSIH system.

The data path on the fight of Figure I uses time-honored MPS card-image input, which is CONVERTed to
an intermediate packed form on the PROBFILE. This is followed by SETUP, which selects appropriate right
hand side, objective and bound information for the specified case and creates a packed "workfile' or 'SETUP
problem'. In MPSHI (as in all descendants of MPS/360) this is an out-of-core file. (See also Benichou et
al.(1977)).

The data path on the left of Figure I uses the DATAFORM model management language to hold the database,
build models, save solution cases, create reports, perform case studies, etc. Here models are saved in tree-
structured form on the random-access ACTFILE, which contains all data pertinant to them, rather than
on a PROBFILE (though conversion is possible between the two forms). The Program Control Language
(PCL) verb READY performs analagously with SETUP in producing a workfile from the ACTFILE.

The workfille produced by these data processing steps is the model representation to be operated on by the
algorithmic modules. These include the PRIMAL or VARIFORM algorithm (with the option of using GUB),
DUAL and numerous Ranging and Parametric algorithms. Solution reporting, some forms of matrix editing,
reoptimization from an old basis and many other functions must also be done at the workfle level.

MPSMI (and some other systems) may carry the above process a step further and repack the workflle
to give an even more compact representation using the concept of 'super-sparsity" (see Kalan(1971) or
Greenberg(1978)). This concept makes use of the fact that the number of 'unique values" even in a sparse
matrix may be relatively small, and in particular, many of them may be +1 or -1. This may be taken
advantage of by using a "pool! of unique values, which is referenced by the individual nonzeros and by
avoiding multiplications by unit coefficients. Thus the standard workfle represents vectors (column as in
Figure 2(a), while WHIZARD, our high-speed in-core optimimer uses a representation as Figure 2 b). If .,
WHIZARD is used for rapid optim'zation, the solution Information (which variables are basic and which
at bound) must be returned to the model in standard workflle format, where we can then INVERT and

2

recompute the solution in the required form for use by other modules.

It should be clear that such MPS's posses a great deal of power and flexibility which their developers and
users are loath to lose or be forced to recreate. The question of when and if some algorithm other than the
revised simplex method (around which such systems were designed) should be incorporated Is thus a serious
one. Beale and Tomlin (1970) elucidated three criteria for incorporating new algorithms:

(a) They are reasonably easy to implement.

(b) They are reasonably easy to use.

(c) They enable a signifcant class of problems to be solved more easily in an MPS framework.

Good examples satisfying these criteria have been GUB (Generalized Upper Bounding) and Branch and
Bound methods. Given a super-sparse capability of the WHIZARD type, Tomlin and Welch (1984, 1985)
showed that special primal simplex algorithms for pure and generalized networks were also excellent examples.
On the other hand, attempts to incorporate decomposition as an integral part of MPS's (as opposed to user
implementation - see Ho and Loute (1983)) have been less successful.

When we come to examine the newer interior point methods in this light, we find that criterion (b) is easily
dealt with- the new algorithm is simply called in place of the old for primal optimization. Criterion (a) is
the topic of most of the rest of this paper. Criterion (c) is of course still a matter of major controversy, but
we have preliminary computational results which indicate positive results for at least one significant class of
problems.

3. MPS Data Structures

We have already described some of the data structures used for matrix representation at the algorithmic
level in MPSfI. We should also consider the related data structures used in the real work of the revised
simplex method. These are the structures of the "transformations? (sometimes known as "etas ") used to
update vectors. The basis (or its inverse) is factorized into a product of elementary transformations:

B- = Ek....E 2E, (3.1)

and is used to compute:
(a,a 2,..., a.1B'{ia~..a, (3.2)

and

eT..

B-1 (3.3)

3

NB

Note that usually several vectors are transformed at once (see Orchard-Hays (1968) and Forrest and Tomlin
(1972)). The nonunit column (or row) of the elementary transformations may be stored analagously with
the way in which matrix columns are stored for the sparse and super-sparse structures.

Finally we indicate the way in which memory is allocated in the standard MPSIU SETUP mode and in
WHIZARD in Figure 3. The WHIZARD structure is inherantly more flexible, and is the one we have used
for other special algorithm implementations. Note that we have shown a larger partition for the WHIZARD
structure, since the WHIZIN conversion module seeks out as large a work space as possible. The size,
manageability and availability of this space (normally used for transformations) is important for interior
point methods since they use a number of arrays of the column dimension of the LP. Allocation of such
arrays in the SETUP mode would be very difficult.

4. Choice of Method(s)

Since the original appearance of Karmarkar's work there have been numerous variations and extensions, and
a choice (or choices) for implementation must be made. We chose the Newton barrier method (see Gill et al
(1986)) for our initial implementation for the following reasons:

(a) Familiarity, due to our collaboration on the cited reference.

(b) The fact that Karmarkar's projective method and the affine method of Vanderbei et al (1985) may be
extracted as special cases of this method.

(c) The ability to handle problems in standard form, with bounds and ranges, with reasonable efficiency.

(d) The fact that it works with a primal feasible solution (if there is one). This allows for early feasible
termination.

We shall not recapitulate the details of the algorithm (see Gill et al (1986)), merely g&ve an outline which
emphasizes the critical sub-agorithms so that we see how they may affect the MPS. The problem is stated

min (cj zi - a Inz3-)

subject to:
Az =b

OS zi j z
where p -- 0.

To outline the algorithm let us define:

D diag(Z,
d= c -A'i,
r =Dd -pe.

4
Z/a.;,; , .,, ', ",,', ."' ., ., 5,,,_ ' % S" .,._. " ." , . - ." . , " - , " . .. " ."

ys

Then the steps of an iteration are:

(1) If p and 1r1H are sufficiently small. STOP.

(2) If *appropriate' reduce p and recompute r.

(3) Solve a least squares problem:

(4) Update the 'pi values' and "reduced costs":

jr.- jr + 6St, d -.d - AT6rt, ,

and compute the search direction p as:

r = Dd - pe, p =-(I/p)Dr.

(5) Calculate the steplength a.

(6) Update z - z+ ap. GO TO (1). ,.,

The most critical step in each iteration is the gradient projection, that is solving the least squares problem
(4.1). As in Gill et al.(1986) we use a preconditioned conjugate gradient method (the LSQR method of Paige
and Saunders (1982)). This involves the Cholesky factorization of (an often approximate) normal equation
matrix

PLLTpT = AD T := ADAT,

where the permutation matrix P is chosen so that the lower triangular factor L is sparse. We then solve the
preconditioned problem

mini JJT - DATPLFVI (4.2)

and recover k = PL-T.

The essential steps in LSQR are calculations of the form

14- + DAT(PLT), (4.3)

and
v- v + L-IPT(ADu). (4.4)

5. Some Implementation Considerations

The WHIZARD environment turns out to be quite convenient for implementation of the Newton barrier
method in the (assembly language) MPSIII system. A first advantage is that all of the Presolve/Postsolve
facilities of WHIZARD are automatically ayaable to reduce and simplify the model, in the same way as
they are for WHIZNET (see Tomlin and Welch (1983,1985)). The existing WHIZIN module also handles
memory management and allocation effectively. In particular most of the arrays automatically assigned
when WHIZIN reconfigures memory for the simplex method have immediate analogues or obvious uses in
the barrier context:

(1) The i vector is used in both algorithms.
,

(2) The P region usually used for the values of the basic variables holds the right hand side.

(3) The "basis headings" aray or "H-region" is available for saving the row permutation P and its inverse.

(4) The 7 row-length work regions are available to hold the "artificial column" for phase I, 6r, and the work
vectors for LSQR. .J.

The large transformation block may be segmented to store:

(5) The column-size vectors z, c, d, r.

(6) The preconditioner L.

There is one more large data structure, which allows access to A row-wise so that AD2AT may be computed.
This is explained below.

An important decision had to be made on the extent to which we would choose data structures which
accomodate existing subroutines and make implementation easier, particularly in the critical steps of corn-
puting and applying the preconditioner. A great deal of the simplex code could be "mined" for the barier
method. For example, note that the computational steps in (4.3) consist of updating v by L-T, equivalent
to a BTRAN of a pricing vector in the simplex method (3.3), and multiplication of DAT by the resulting
vector involves essentially the same work as a full (scaled) PRICE of the matrix. Similarly in (4.4) we see
that forming ADs requires essentially the same work as performing a CHECK for a (scaled) solution u.
The update of the permuted ADu by L-1 corresponds to the FTRAN of a vector in the simplex method
(3.2). The computation of the Cholesky factors LLTthemselves could be regaded as a special symmetric
application of the sparse factorization used in simplex INVERT routines.

It is a natural temptation to use the WHIZARD transformation data structures and modify INVERT,
FTRAN, BTRAN etc. to exploit existing code. We decided not to do this for a number of reasons:

(a) We expect L to be not at all super-sparse, unlike the basis factors produced by INVERT for the simplex

6

method, and indeed to be much denser altogether.

(b) The simplex FTRAN and BTRAN (see (3.2-3)) routines are designed with the efficient update of multiple
vectors in mind. We do not wish to do that at this stage.

(c) Published algorithms are available (see George and Liu (1981)) which can be easily integrated, using
simple data structures, and which predict storage requirements for L, thus enabling us to avoid exceeding
space available.

We thus chose to adopt the data structures used by George and Liu (1981), including the use of the "com-
pressed storage scheme", with the modification that the row index array is of full word length so that the
indices multiplied by eight may be stored (to avoid shifts in inner loops). Pointers into the index and value
arrays are also shifted appropriately.

%

6. Auxillary Processing

There are several non-trivial proceedures which must be carried out before the algorithm can be even begun.
In particular, the permutation P, the nonzero structure of L and a representation of AT must be determined.

To determine P we require the non-zero structure of AAT. We do this by processing the columns of A
sequentially and building a list of index pains (il,i 2) in each column, each pair in a full word. When all
columns have been processed, or periodically if array space is exceeded, this list is sorted (using Shell sort).
Duplicate pairs may then be purged in a single pass, and the data reconfigured into a form suitable for a
minimum degree ordering, which gives P (see Liu (1985)). This is then followed by a symbolic factorization,
derived from George and Liu (1981). As stated above, the data structure is modified for efficient application
of the preconditioner L. Once the nonzero structure of L is available, the memory requirements for the
algorithm can be computed, and if insufcient space is available the proceedure may be halted.

The remaining major data structure is required so that we may compute

LLT = PT4 D2rP (6.1)

where A and D are modifled to exclude dense columns and those corresponding to tiny zi. This requires
either a much more expensive updating proceedure for the data structure L, if we access A only by column,
or the ability to access the matrix row-wise. We chose the latter alternative. The data structure used to do
this Is as follows:

Since we already have a count of the number of nonzeros in each row from earlier processing it is easy to set
up an array which contains a single word for each useful nonzero (i.e. those not eliminated by PRESOLVE)
in the matrix. A row length array points to the first entry for each row (see Figure 4) in permutation
order. Each entry in the ROWLNK arry consists of a 3-byte column number for the element and a 1-byte
offset which gives the offset of the nonzero in the super-sparse packed WHIZARD matrix. There is also ' .-
a column-length COLADR array (also used for other purposes) which gives the address of each column in
the matrix and a 1-byte offset which specifies where the non-unit elements begin relative to the top the

7

..

column description. The offsets in the two arrays may thus be compared logically to see if a nonzero in the
row being referenced is a unit entry or not, and treat it accordingly. Note that the ROWLNK array, once
allocated, can be built in a single pas of the matrix, using only row-size work arrays. We should also point
out that the 1-byte offsets limit this structure to columns represented by at most 256 bytes. However, this
is no restriction, since such columns would contain over 120 nonzeros, and we do not wish to consider such
columns when computing the preconditioner anyway.

7. Transition to a Basic Solution

No matter how rapidly an interior point algorithm may perform, it will not usually lead to a in instantly
identifiable optimal basic solution. However in many, if not most applications a basic solution (or at least
one with a minimal number of nonzero values) is very important. Reasons for this am..

(1) It is desieable in practice to keep the number of 'active" activities small.

(2) Basic solutions are more "nearly integer' in many models, e.g. production-distribution models.

(3) It is easier to save and restore model status.

(4) All the standard postoptimaity and sensitivity analysis procedures, including ranging and parametrfics,
assume a basic optimum.

(5) Use of nonlinear procedures requiring repeated solution of modified LP problems (e.g. MIP by branch
and bound and SLP) seem to remain dependant on variants of the simplex method.

The idea of using some non-simplex method to perform part of the optimization work and then switching to
the simplex method is by no means new. In fact a "BASIC" technique for purifying non-basic solutions has
been a part of MPS's for many years (it appears in the early MPS/360 documentation, see also the MPSI-
User's Manual). Among the uses that have been made of this proceedure are transitions from Dantzig-Wolfe
decomposition (see Ho and Tomlin (1977)), from an Augmented Lagrsngian method (see BeaJe, Hattersley
and James (1985)) and projective /barier methods (see Gill et al.(1986)). However, in the latter case the
transition was carried out through an external interface, which is inefficient and clumsy. The clear remedy
is to implement a BASIC procedure internally in WHIZARD to process the nonbasic solution. We realized
this, but made an attempt to avoid it.

Our experiments with interior point methods had lead to the observation that there were invariably less
than m solution values significantly away from zero (or their bounds). In other words, our problem is not an
excess of candidates for basic status. It therefore seemed possible that a simple classificaulon and pivoting
scheme would sufce.

Let us assume some general "significance tolerance" i and suppose we have obtained 'optimal" primal and
dual values z and r. The latter are used to calculate the reduced costs (di values) and we classify the columns d.-

and rows as in Table 1. The action to be tried for relevant pair of categories, based on complementarity

8 7-:

I,.o

Col Zj > i Zi < f zj < f
di < di <c di > i

Rows _

Slack< f PIVOT SECONDARY FIX
ifil > (HERE PIVOT TO ZERO

Slack< e SECONDARY TERTIARY
VIf <6 PIVOT PIVOT _ _

Slack> i BASICfrI<E SLACK _"

Table 1

considerations, is given in the body of the table.

The primary attempt is to pivot columns with positive values on active constraints (with 7i # 0). Normally
there would be an imbalance of these, which requires a secondary choice of either pivoting columns with
positive zj on rows with ri := 0, or columns with a zero zi on active constraints. There may then be some
tertiary pivots necessary to use up the remaining rows which are not assigned basic slacks. If all went well,
this scheme should lead to an optimum basic feasible solution.

In practice this naive scheme almost always failed. This seems to be because, even for very sparse and
degenerate problems, there is significant linear dependance between the columns corresponding to positive
zj in the solutions produced by the interior point method. Attempts to pivot these columns into a basis
therefore are doomed to failure, and we are in the same position as when a singular 'basis" is provided by
a user- columns must be dropped, and the starting solution is infeasible. The number of simplex iterations
needed to recover feasibility and then optimality may be large.

,,.-

Given the failure of the naive scheme, there was no alternative to implementing a version of the BASIC
algorithm within WHIZARD itself. The steps of this algorithm are not widely known, so we briefly restate
them here:

Suppose all vasiables are at tentative values zj' and that:

Az' = b, 0 < Z! <uj

The normal simplex iteration, pivoting on row r, computes:

-. - mj,(i € r) ,...

when column j enters the basis. '. ssume that, as usual, if a vector has di > 0 it will be decreased (as if it
was coming in from it's upper bound). In this case -aj will be FTRANned and used in CHUZR. If di < 0
it is to be increased in the usual way. The explidt calculations are:.

can (1)d < 0

- . .

..

If O, < (U - zj) do a regular pivot. i.e. modify by O,ai . Set 0= , + z;.

If O, (U, - z*) do a bound flip type move. i.e. modify A by (Uj - z;)a, and mark zi as being at it's
upper bound (of Uj).

Case(2) di > 0 1

If B, > z; do a bound fip type move. iLe modify 0 by zja, and mark zi as being at it's lower bound
(Of 0).

If O, < z; do a regular pivot. i.e. modify 0 by Oai. Set , = - O,.

Depending on the starting nonbasic solution there is no guarantee that the result will be feasible or optimal,
only that the sum of infeasibilities or objective will not be degraded. It is therefore necessary to call the
simplex method to verify or achieve optimality before entering Postsolve.

8. Preliminary Computational Results

It is not our intention to give detailed or extensive computational experience in this paper (this will be
done in a later publication). Some prelimiary results &re of interest, however. Table 2 gives the oginal
and reduced (Presolved) dimensions of a subset of the problems in Gill et al.(1986). Note the significant
reductions achieved for some models, particularly the highly degenerate NZFRI forestry model. If the large
structurally degenerate part of the model is not removed in this clas of modeis the behaviour of the simplex
method can be badly affected, even using some anti-degeneracy procedure, whereas we see in Table 3 that
the WHIZARD "fast primal" starting from a "crashed" basis easily outperforms the current interior point
implementation. This is true of the other models also, with one exception.

Orign Dimensions Reducid Dimensions
Problem Name Rows Columns Rows Columns

AFIRO 28 32 28 32

SHARE2B 97 79 97 79

BRANDY 221 249 131 222

BANDM 306 472 244 322

DEGEN2 445 534 442 534

NZFRI 624 3521 415 2034

Table 2

The model DEGEN2 is also highly degenerate, but does not exhibit a significant structurally degenerate,

removable component of the model. The simplex method requires a great many iterations for this class of

10

models and the barrier method is able to win by a significant margin, even with quite a lengthy BASIC
and simplex phase added on to achieve a basic optimum. We have therefore found at least one class of
models for which interior methods show promise. More generally, we should point out that it seems that
many of the models used elsewhere in comparisons to .how interior methods to advantage seem to be highly
degenerate. Furthermore, most comparisons have been made with MINOS, which is a FORTRAN code with
no anti-degeneracy procedure and no Presolve to remove structural degeneracy. Our comparisons, on the
other hand, are with a state-of-the-art assembly language simplex code, with both algorithms in the same
environment.

WHIZARD WHIZARD BARRIER PLUS
Problem Nzme FAST PRIMAL BARRIER BASIC

AFIRO 0.06 0.018 0.020

SHARE2B 0.36 0.96 1.14

BRANDY 1.32 3.72 4.50
BANDM 1.86 5.28 7.02

DEGEN2 35.58 18.54 24.00

NZFRI 6.06 20.16 29.64 ..

Table 3

9. Further Work

The implementation and results we have described represent only a beginning, with the need for a number
of improvements reconized. The efficiency of the WHIZARD internal BASIC procedure can certainly be
improved. Almost certainly, other improvements can be made to the interior point method itself. We have
not yet tried the straightforward Vanderbei et al.(1985) algorithm or the approximate trajectory method
used in Adler et al.(1986). Similarly there are possible improvemerts to be gained by using different spare
factorization techniques along the lines given by Gustavson Pt aI.(1970). The possibility of updating the
LLT factors, as sugge ted by Karmarkar (1984) and Shanno (1985) has yet to be e-aluated, as have dual ,
algorithms (Osborne (1986)).

A pressing question for general use of interior methods in MPS's is whether restart procedures for modified
models can be found which compete with variants of the simplex method. Until this question is answered
there is no alternative to using simplex-based technology for such procedures as branch and bound, sequential
LP, or even regular production use of many large-scale LP models. Jb

ll -p.--

." . .'"." .- " . .- '.- -", "."",. " "-".".- ,'" -".".- ,- o".- .-" "," .'.- .-" -".'"- -" '"- ..' -' - -'-- ','" "-'" " . ." . #-" ", '." -" ,".

10. Conclusion

Despite the dramatic differences in philosophy and approach, it seems that interior point LP methods can
be implemented with reasonable efficiency, and even elegance, in production Mathematical Programming
Systems based on the simplex method. Wh&t is not yet known is what effect this will have on the economical
solution of which classes of large-scale LP models. We have tentatively identified one class, and certain other
models with special structure (e.g. block angular and staircase) seem good candidates. We expect to report
further on implementation and computational experience in subsequent papers.

Acknowledgements

The authors are indebted to T. A. Dehne and M. A. Saunders for a number of helpful suggestions and to
C. J. Strauss for his assistance with computational experiments.

References
.. ..-

Adler, I., Resende, M. G. C. and Veiga. (1986). An Implementation of Karmar"'r's Algorithm for Linear
Programming, Manuscript, Dept. of lE/OR, Univerity of California, Berkeley, CA.

Beale, E. M. L. (1970). "Advanced Algorithmic Features for General Mathematical Programming Systems,"
in Integer and Nonlinear Programming, (J. Abadie, ed.), pp. 119-137, North Holland Publishing Company,
Amsterdam.

Beale, E. M. L. and Tomlin, J. A. (1970). 'Special Facilities in a General Mathematical Programming
System For Non-convex Problems Using Ordered Sets of Variables", in Proceedings of the Fifth International
Conference on Operational Research (J. Lawrence, ed.), pp. 447-454, Tavistock Publications, London.

Beale, E .M. L., Hattersley, R. and James, L. (1985). An augmented Lagrangian approach to linear pro-
gramming. Paper presented to the 12th International Symposium on Mathematical Programming, Boston,
MA., August 1985.

Benichou, M., Gauthier, J. M., Hentges, G. and Ribire, G. (1977). The efficient solution of large-scale
linear programming problems - some algorithmic techniques and computational results, Math. Prog. 13,
pp. 280-322.

Brown, G. G. and Graves, G. W. (c.1983). XS Mathematical Programming System, perpetual working paper.

Dantzig, G. B. (1963). Linear Programming and Extensions, Princeton University Press, Princeton, New
Jersey.

Fiacco, A. V. and McCormick, G. P. (1968). NonlinearProgramming Sequential Unconstrained Mnimization
Techniques, John Wiley and Sons, New York and Toronto.

12

Forrest, I J. H. and Tomlin, I A. (1972). Updating triangular factors of t0e basis to maintain sparsity in
the product form simplex method. Math. Prog. 2, pp. 263-278.

George, J. A. and Liu, . W. (1981). Computer Solution of Large Sparse Positive Defnite Systems, Prentice-
Hall, Englewood Cliff, NJ.

Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization, Academic Press, London and
New York.

Gill, P. E., Murray, W., Saunders, M. A., Tomlin, . A. and Wright, M. H. (1985). On Projected Newton
Barrier Methods for Linear Programming and an Equivalence to Karmarkr's Projective Method, Math.
Prog. 36, pp. 183-209.

Greenberg, H. 3. (1978). "A tutorial on matricial packing", in Design ad Implementation of Optimization
Software, (H. J. Greenberg, ed.), pp. 109-142, Sijthof and Noordhof, The Netherlands.

Gustavson, F. G., Liniger, W. and Willoughby, R. (1970). Symbolic generation of an optimal Crout algorithm
for sparse systems of linear equations. Journal of the ACM 17, pp. 87-109.

Ho, . K. and Loute, E. (1983). Computational experience with adNanced implementation of decomposition
algorithms for linear programming. Math. Prog. 27, pp. 283--90.

Ho, . K. and Tomlin, . A. (1977). "A hybrid approach to multi-stage linear programs". Technical report
SOL 77-27, Department of Operations Research, Stanford University, Stanford ,CA.

; .

Kala.n, 3. E. (1971). "Aspects of large-scale in-core linear programming', in Proceedings of the ACM Annual
Conference, Chicago, 17/., pp. 304-313, ACM, New York.

Kzrmarla.r, N. (1984). A new polynomial-time algorithm for linear programming, Combinatorica 4 pp. 373-
395. "?-

Khachiyan, L. G. (1979). A polynomial algorithm in Hinear programming, Doklady Akademiia Nauk SSSR
Novaia Serlia 244, pp. 1093-1096. [English translation in Soviet Mathematics Doklady 20, (1979), pp. 191-
194.1

Liu, . W. H. (1985). Modification of the minimum-degree algorithm by multiple elimination, ACM Trans-
actions on Mathematical Software 11, pp. 141-153.

Murtagh, B. A. and Saunders, M. A. (1983). MINOS 5.0 user's guide, Report SOL 83-20, Department of
Operations Research, Stanford University, California.

M.R. Osborne (1986) "Dual Barrier Functions with Superfast Rates of Convergence for the Linear Program-

ming Problem', manuscript, Dept. of Statistics, Australian National University, Canberra.

Wm. Orchard-Hays (1968). Advanced LinearProgramming Computing Techniques, McGraw-Hill, New York.

13

Paige, C. C. and Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least-
squares, ACM Transactions on Mathematical Software 8, pp. 43-71.

Shanno, D. F. (1986). Computing KarmarkLr Projections Quickly. Working paper 8.5-10, Grad School of
Admin, University of California, Davis, CA.

Stone, R. E. and Tovey, C. A. (1986). Karmarklr's algorithm as a generalization of simplex. Paper presented
at the TIMS/ORSA 21st Joint National Meeting, Los Angeles, CA, April 1986.

Tomlin, J. A. and Welch, . S. (1983). Formal optimization of some reduced linear programming problems, V
Math. Prog. 27, pp. 232-240.

Tomlin, J. A. and Welch, . S. (1984). Solving generalized network models in a general purpose mathemat-
ical programming system. Paper presented at the ORSA/TIMS 18th Joint National Meeting, Dallas, TX,
November 1984.

Tomlin, . A. and Welch, . S. (1985). Integration of a Primal Simplex Algorithm with a Large Scale
Mathematical Programming System, ACM Trans. on Math. Softw. 11, pp. 1-11. ,3.

Vanderbel, R J., Meketon, M. S. and Freedman, B. A. (1985). A modification of Karmark.r's linear pro-
gramming algorithm, Manuscript, AT&T Bell Laboratories, Holmdel, New Jersey.

14"

m 4

thd.

4J4

a

E-

0 4 4)

ad E- z a) U14 Z N K

cd 9 W) -.
C4 a z4

A0 >
c.n**4

14 P4

45r0

c'

'Z~ ~ ~ ~~~~~~~~~t u * *~i4 ~#Sj ~P ~~. 4. fv -<.-- . -. a . . /.

OUfN NAME

SCALE FACTOR

VALUE 1 ROW 1

VALUE 2 RoW 2

VALUE RO

FIGURE 2(A)

WOJWILE FORMAT

HEADER # BYTES

BOUND " VALUE PJOL
POINTER (nOUBLE WORDS) ".'

+1 S 2K

Row ROW I VALUE 1
INDICES .\AU -

'!ALUE 2
ROW K <

VALUE L

VALUE PTR K+I
POINTER K+1

ROW L ,;°

PTR L

FIGURE 2(B)

WHIZAPD FORMAT

1 '~

EXECUTOR

EXECUTOR COMMUNICATIONS
REGION

COMMUNICATIONS
REGION

WHIZARD
OVERLAYS

LOAD

MODULES

MATRIX

H-REGION

REGION H-REGION
i REGION-

P REGION i REGION

REGION

WORK
VECTORS a REGION

MATRIX
BUFFERS

ETASPACE

ETA
BUFFERS

Figure 3(&) 7mWORK
SETUP Structure VECTORS

Figure 3(b)
WHILZRD Structure

~3a~

ROW
ORIGINS F4UK

ROWi

OFF~~ COLM1

ROW K
SE

ROW I~l

FI GURE 14.

Row LIINKS

- - - - - -~- -7~ F ~ ~ ~ ~.D !~ ~ Z -. X X~N~WU ~ Z ~ ZAWU

'a

N

p

'a

4

4

4

a'

- -
.4

